Preview

Metrologiya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Информационный критерий коррекции зашумлённых гиперспектральных измерительных данных с применением производной спектральной характеристики

Abstract

The method of hyperspectral data processing based on subtraction of noisy effect of the first-order derivative of signal is developed. The criterion for determining of optimum compromise removal of noisy signals and low informative components of signal of hyperspectrometers upon analysis of first-order derivative of these signal is proposed. The formula for determination of hyperspectral data information content is obtained, and the possibility for optimization of that content by utilization of the Euler-Lagrange equation is shown.

About the Authors

Х. Асадов
Национальное аэрокосмическое агентство
Russian Federation


М. Керимова
Азербайджанский государственный университет нефти и промышленности
Russian Federation


Р. Эминов
Азербайджанский государственный университет нефти и промышленности
Russian Federation


References

1. Tsai F., Philpot W. Derivative Analysis of Hyperspectral Data // Remote Sensing of Environment. 1998. V. 66. Р. 41-51.

2. Hoffbeek J. P., Langrebe D. A. Classification of high dimensional multispectral image data // Fourth Annual JPL Airborne Geoscience Workshop. Washington, USA, 1986. [Электрон. версия]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.1090&rep=rep1&type=pdf (дата обращения: 08.09.2017).

3. Martin M. E., Aber J. D. Measurements of canopy chemistry with 1992 Aviris data at Blackhawk Island and Harvard Forest // Fourth Annual JPL Airborne Geoscience Workshop: AVIRIS (R.O. Green, Ed.). Jet Propulsion Laboratory, Pasadena, USA, 1993. V. 1. Р. 113-116.

4. Huguenin R. L., Jones J. L. Intelligent Information extraction from reflectance spectra: absorption band position // J. Geophys. Res. 1986. No. 91(B9). P. 9585-9589.

5. Kawata S., Minami S. Adaptive smoothing of spectroscopic data by a linear mean - square estimation // Appl. Spectrosc. 1984. V. 38. No. 1. P. 49-58.

6. Эльсгольц Л. Е. Дифференциальные уравнения и вариационное исчисление. М.: Наука, 1974. С. 434.


Review

For citations:


 ,  ,   . Metrologiya. 2018;(1):36-41. (In Russ.)

Views: 121


ISSN 0132-4713 (Print)
ISSN 2712-9071 (Online)