Preview

Metrologiya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Method of double averaging for optimum accounting of non certainty of results of measurements greenhouse gases low gases concentrations at the ground distributed systems of atmospheric measurements

https://doi.org/10.32446/0132-4713.2020-2-19-30

Abstract

To increase effectiveness of measurements of concentration of greenhouse gases questions on optimum accounting of non certainty of results of measurements of low gases concentrations at the ground distributed nets of atmospheric measurements are considered. It is noted that temporal and structural non stability of atmospheric aerosol leads to occurrence of noncertainty of carried out measurements. It is suggested to use the method of nonconditional variation optimization to determine the optimum interrelation between cost functions of researched atmospheric gas and aerosol which provides best metrological support for carried out measurements. In order to form the functional of optimization the newly suggested method of double averaging is used. The matter of suggested method of double averaging is that two following different averaging operations should be carried out sequentially: geometrical weighted averaging and algebraic averaging. To form the target functional of optimization the limitation condition should be adopted which is imposed to searched for optimum function. Solution of the formulated optimization task of non conditional variation optimization does show that upon presence of linear interrelation between scalar cost functions of gas and aerosol the target functional could reach its maximum that is the uttermost value of non certainty of measurements results are reached. On the base of aforesaid the heuristically recommendations on necessity to form the inverse interrelation between scalar values of cost functions of researched gas and atmospheric aerosol are formulated.

About the Authors

Natig H. Djavadov
National Aerospace Agency
Russian Federation


Hikmat H. Asadov
National Aerospace Agency
Russian Federation


Reyhana V. Kazimli
National Aerospace Agency
Russian Federation


References

1. Curci S., Lavecchia C., Frustaci G., Paolini R., Pilati S., Pagenelli C., Assessing meteorology measure uncertainty in urban environments, available at: https://www.researchgate.net/publication/318328347_Assessing_measurement_uncertainty_in_meteorology_in_urban_environments (accessed: 15.09.2019).

2. Елагин Б. Т. Основы экологии городской застройки: учебное пособие. М.: УМК ВО, 1990, 56 с.

3. WMO Nr.8-CIMO Guide 2008 Edition, update in 2010. P-I_Ch-1, Annex 1. B., available at: https://www.weather.gov/media/epz/mesonet/CWOP-WMO8.pdf (accessed: 15.09.2019).

4. Ziehn T., Law R. M., Rayner P. J., Roff G., Geoscience. Instrumental Methodological Data Systems, 2016, vol. 1, pp. 1-15. https://doi.org/10.5194/gi-5-1-2016

5. Заварзин Г. А., Кудеяров В. Н. Почва как главный источник углекислоты и резервуар углерода // Вестник РАН. 2006. Т. 76. № 1. С. 14-24.

6. Калюжный И. Л., Лавров С. А. Сезонная эмиссия диоксида углерода в засушливый год на олиготрофном болотном массиве Cеверо-Запада России // Метеорология и гидрология. 2005. № 10. С. 81-93.

7. Кондратьев К. Я., Григорьев А. А., Покровский А. Г., Покровский О. М., Смоктий О. И., Тимофеев Ю. М. Космическая дистанционная индикация малых газовых и аэрозольной компонент атмосферы. Л.: Издательство ЛГУ, 1974, 109 с.

8. Ciais P., Sabine C., Bala G., Bopp L., Brovkin V., Candell J., Chbara A., DeFries R., Galloway J., Heimann M., Jones C., Le Quere C., Myneni R., Piao S., Thornton P., Carbon and other biogeochemical cycles, UK and New York, NY, USA, Cambridge University Press, 2013, vol. 6, pp. 465-570. https://doi.org/10.1017/CBO81107415324.015

9. Воробьёв В. Н., Саруханян Э. И., Смирнов Н. П. «Глобальное потепление» - гипотеза или реальность? // Учёные записки Российского государственного гидрометеорологического университета. 2005. № 1, С. 6-21.

10. Ревич Б. А., Шапошников Д. А. Изменения климата, волны жары и холода как факторы риска повышенной смертности в некоторых регионах России // Проблемы прогнозирования. 2012. № 2. С. 122-138.

11. Филатов Н. Н., Назарова Л. Е., Сало Ю. А. Региональный климат: возможные сценарии изменения климата Карелии. Похолодание или потепление? // Известия РГО. 2007. Т. 139. № 3. С. 72-79.

12. Rayner P. J., Scholze M., Knorr M., Kaminski W., Giering R., Widmann H., Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS). Global biogeochemical cycles, 2005, vol. 19, GB 2026. https://doi.org/10.1029/2004GB002254

13. Gurney K. R., Law R. M., Denning A. S., Rayner P. J., Baker D., Bousquet P., Bruhwiler L., Chen Y., Ciais P., Fan S., Fung I. Y., Gloor M., Heimann M., Higuchi K., John J., Maki T., Maksyutov S., Masaire K., Peylin P., Prather M., Pak B. C., Randerson J., Sarmiento J., Taguchi S., Takahashi T., Yuen C., Nature, 2002, vol. 405, pp. 626-630. https://doi.org/10.1038/41562a


Review

For citations:


Djavadov N.H., Asadov H.H., Kazimli R.V. Method of double averaging for optimum accounting of non certainty of results of measurements greenhouse gases low gases concentrations at the ground distributed systems of atmospheric measurements. Metrologiya. 2020;(2):19-30. (In Russ.) https://doi.org/10.32446/0132-4713.2020-2-19-30

Views: 179


ISSN 0132-4713 (Print)
ISSN 2712-9071 (Online)