Preview

Metrologiya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Method calculating of uncertainty in evaluating the detailing coefficients of waveletconversion of profile brightness image

https://doi.org/10.32446/0132-4713.2020-1-28-47

Abstract

The analysis of the relevance of the use of measurement methods based on obtaining visual data. The main problems that arise in automated image analysis systems in calculating the uncertainty of estimates of quantitative characteristics of images are identified. Since modern methods of collecting and transforming visual data are characterized by great diversity, at the moment there are no general recommendations for calculating the uncertainty of estimates of their geometric and brightness parameters. The article is devoted to the development of a method for calculating uncertainty in evaluating the detailed coefficients of the wavelet transform, which is used in the automated analysis of images of gas-discharge radiation of water. The method based on recording gas-discharge radiation of water samples in an external pulsed electromagnetic field was chosen to study the biological properties of water, since the formation of a gas discharge in the air gap between conductors directly depends on the presence of free charge carriers that can be simulated from the surface of the object under study. The number of free charge carriers determines the biological properties of water, since they affect the ability of drinking water to provide metabolic processes in living organisms by maintaining the normal course of redox reactions at the cellular level. To assess the biological properties of water and highlight the corresponding informative features of gas-discharge images, it is proposed to use the method of one-dimensional wavelet transform of the brightness profile. A method for calculating the uncertainty in evaluating the detailed coefficients of the wavelet transform is considered. The proposed method for calculating the uncertainty is based on the results of repeated observations and allows us to estimate the uncertainty of the measurement results presented in the form of quantitative signs of images.

About the Author

Natalija V. Glukhova
Dnipro University of Technology
Russian Federation


References

1. Фомин В. В., Михайлович А. П., Попов А. С., Низаметдинов Н. Ф., Шалаумова Ю. В. Метрологические аспекты анализа изображений // Измерительная техника. 2008. № 2. С. 26-28.

2. Шалаумова Ю. В. Разработка и исследование модели представления и методов обработки информации о сложных слабоформализуемых объектах для фотоландшафтной базы данных: автореф. дис. канд. техн. наук (Екатеринбург, 2013).

3. Almazroa A., Alodhayb S., Raahemifar K. and Lakshminarayanan V., An Automatic Image Processing System for Glaucoma Screening, 2017, nо. 10, рр. 112-132. DOI: 10.1155/2017/4826385

4. Su Ye, R. Gilmore Pontius Jr., Rakshit R., ISPRS Journal of Photogrammetry and Remote Sensing, 2018, nо. 141, рр. 137-147. DOI: 10.1016/j.isprsjprs.2018.04.002

5. Rose L, Lobet G., Methods in Ecology and Evolution, 2019, nо. 2, рр. 1594-1606. DOI: 10.1111/2041-210Х.13156.

6. Emilio Del Giudice, A. Tedeschi, V. Voeikov, G. Vitiello., Research Signpost India, 2015, nо. 37/661 (2), 19 p. DOI: 10.13140/RG.2.1.2329.1046

7. Johansson В., Sukhotskya S., Functional Foods in Health and Disease, 2016, no. 6, pp. 388-413. DOI: 10.31989/ffhd.v6i6.265

8. Крыжановский Э. В. Метод контроля жидкофазных объектов на основе газоразрядной визуализации: дис. канд. техн. наук (Санкт-Петербург, 2003).

9. Abella A., Amorós A., González M., del Corral A., Peña J., Water, 2017, nо. 3, рр. 165-171. DOI : 10.14294/WATER.2017.3

10. Глухова Н. В. Кластерный анализ результатов измерений параметров газоразрядного излучения образцов крови // Метрология. 2015. № 3. С. 58-66.

11. Bell I., Lewis D.A., Brooks A.J., et al., J. Altern. Complement Med., 2003, nо. 9, рр. 25-37. DOI: 10.1089/107555302317371460

12. Александрова Р. А., Федосеев Г. Б., Коротков К. Г., Филиппова Н. А., Крыжановский Э. В. Анализ систематических погрешностей и воспроизводимости данных в методе ГРВ // Материалы IV Международного конгресса «Наука. Информация. Сознание», 10-12 июля 2000, Санкт-Петербург. СПб.: СПбИТМО, 2000. С. 1-4.

13. Борисова М. В., Крыжановский Э. В., Ткалич В. Л. Оценка погрешности экспериментальных результатов при исследовании методом ГРВ биоэлектрографии // Известия высших учебных заведений. Приборостроение. 2006. Т. 49. № 2. С. 30-31.

14. Коротков К. Г. Стабильность и воспроизводимость ГРВ параметров. От эффекта Крилиан к биоэлектрографии. СПб.: СПбИТМО, 1997. С. 94-95.

15. Glukhova N. V., Information Processing Systems, 2016, nо. 6 (143), рр. 32-35.

16. Glukhova N. V., News of the National Technical University "KhPI". Ser. Informatics and modeling, 2015, nо. 33 (1142), pp. 20-27.

17. Glukhova N. V., Measuring and Computing Techniques in Technological Processes of VOTTP-15, Abstracts of the 15th International Science and Technology Conference, 2015, Ukraine, Odessa, P. 73.

18. Akansu A. N., Serdijn W. A., and Selesnick I. W., Physical Communication, March 2010, vol. 3, no. 1, pp. 1-18. DOI: 10.1016/j.phycom.2009.07.001

19. Гржибовский А. М. Анализ трёх и более групп количественных данных // Экология человека. 2008. № 3. С. 50-58.


Review

For citations:


Glukhova N.V. Method calculating of uncertainty in evaluating the detailing coefficients of waveletconversion of profile brightness image. Metrologiya. 2020;(1):28-47. (In Russ.) https://doi.org/10.32446/0132-4713.2020-1-28-47

Views: 162


ISSN 0132-4713 (Print)
ISSN 2712-9071 (Online)