Preview

Metrologiya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Determination of probabilistic characteristics of random values of estimates of the Lyapunov function when describing a physical process

https://doi.org/10.32446/0132-4713.2021-4-53-67

Abstract

The applied application of the Lyapunov characteristic function is determined by the properties of its estimates. Probabilistic characteristics of estimates of the Lyapunov characteristic function are described for the first time. The probabilistic characteristics of random values of estimates of the Lyapunov function are empirically estimated using statistical methods. The Matlab package has developed a model of a special device for obtaining estimates of the characteristic function by a direct method. A quasi-deterministic signal is fed to the input of the model, the instantaneous values of which are distributed according to the arcsine law, and an array of values of estimates of the Lyapunov function is obtained at the output, which is used to estimate the probabilistic characteristics of these estimates. Statistical estimation was performed by an indirect method. It is established that the values of the estimates of the Lyapunov characteristic function are distributed according to the normal law. The results of the research will be useful in engineering calculations, for example, when detecting message transmission errors in modems with a modulated characteristic function.

About the Authors

Yu. M. Veshkurtsev
Institute of Radioelectronics, service and diagnostics
Russian Federation

Yuri M. Veshkurtsev

Omsk



D. A. Titov
Omsk State Technical University
Russian Federation

Dmitry A. Titov

Omsk



References

1. Lyapunov A. M., Sobranie sochinenij v 6 tomah [Collected works in 6 volumes], vol. 1, Moscow, AN SSSR Publ., 1954, pp. 125–176. (In Russ.)

2. Brown C. L., Zoubir A. V., A new approach to testing Gaussianity with the characteristic function, Trends in Information Systems Engineering and Wireless Multimedia Communications, 1997 International Conference on Information, Communications and Signal Processing, Singapore, September 9–12, 1997, IEEE, 1997, vol. 2, pp. 1198–1202. https://doi.org/10.1109/ICICS.1997.652173

3. Schoenecker S., Luginbuhl T., IEEE Signal Processing Letters, 2016, vol. 23, iss. 5, pp. 644–647. https://doi.org/10.1109/LSP.2016.2537981

4. Parchami M., Amindavar H., Ritcey J. A., Application of characteristic function to detection in sinusoidal interference plus Gaussian noise, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, April 19–24, 2009, IEEE, 2009, pp. 3057–3060. https://doi.org/10.1109/ICASSP.2009.4960269

5. Gray J. E., Addison S. R., Computing the characteristic function for sums of sinusoidal random variables, 2006 Proceeding of the Thirty-Eighth Southeastern Symposium on System Theory, Cookeville, TN, USA, March 5–7, 2006, IEEE, 2006, pp. 338–343. https://doi.org/10.1109/SSST.2006.1619123

6. Parshin V. S., Recognition of random signals when used as features of sample characteristic functions, Digital Signal Processing, 2019, no. 2, pp. 29–34. (In Russ.)

7. Kostyukov V. N., Naumenko A. P., Kudryavtseva I. S., Journal of Physics: Conference Series, 2018, vol. 944, 012063. https://doi.org/10.1088/1742-6596/944/1/012063

8. Kostyukov V. N., Naumenko A. P., Kudryavtseva I. S., Procedia Engineering, 2016, vol. 152, pp. 521–526. https://doi.org/10.1016/j.proeng.2016.07.649

9. Kostyukov V. N., Naumenko A. P., Kudryavtseva I. S., Boychenko S. N., Testing. Diagnostics, 2016, no. 8, pp. 22–29. (In Russ.) https://doi.org/10.14489/td.2016.08.pp.022-029

10. Song Y., Xie C., Chen J., Medical image segmentation using characteristic function of Gaussian Mixture Models, 2010 3rd International Conference on Biomedical Engineering and Informatics, Yantai, China, October 16–18, 2010, IEEE, 2010, pp. 376–379. https://doi.org/10.1109/BMEI.2010.5639529

11. Veshkurtsev Yu. M., Prikladnoj analiz harakteristicheskoj funkcii sluchajnyh processov: monografija [Applied analysis of the characteristic function of stochastic processes], Moscow, Radio i svjaz’ Publ., 2003, 204 p. (In Russ.)

12. Gnedenko B. V., Kurs teorii verojatnostej [Probability theory course], Moscow, Nauka, 1969, 400 p. (In Russ.)

13. Veshkurtsev Yu. M., Veshkurtsev N. D., Algazin E. I., RF Patent no. 2626332, Byull. Izobret., no. 21 (2017).

14. Levin B. R., Teoreticheskie osnovy statisticheskoj radiotehniki [Theoretical foundations of statistical radio engineering], Moscow, Sov. Radio Publ., 1966, 728 p. (In Russ.)

15. Veshkurtsev Yu. M., Veshkurtsev N. D., Titov D. A., Priborostroenie na baze harakteristicheskoj funkcii sluchajnyh processov: monografija [Instrumentation based on the characteristic function of random processes], Novosibirsk, SibAK Publ., 2018, 182 p. (In Russ.)

16. Tihonov V. I., Statisticheskaja radiotehnika [Statistical radio engineering], Moscow, Sov. radio Publ., 1966, 678 p. (In Russ.)


Review

For citations:


Veshkurtsev Yu.M., Titov D.A. Determination of probabilistic characteristics of random values of estimates of the Lyapunov function when describing a physical process. Metrologiya. 2021;(4):53-67. (In Russ.) https://doi.org/10.32446/0132-4713.2021-4-53-67

Views: 827


ISSN 0132-4713 (Print)
ISSN 2712-9071 (Online)