

Combined method for correction interval systems of linear algebraic equations
https://doi.org/10.32446/0132-4713.2021-4-17-39
Abstract
The possibility of application of the interval analysis for data processing in the field of spectral analysis is considered. It is assumed that the data have interval uncertainty; therefore the problem of finding unknown concentrations is posed as a linear interval tolerance problem. The incompatibility of the interval system of linear algebraic equations is shown for the initial data using the apparatus of the recognizing functional. The relevance of the topic is due to the need for regularization of inconsistent interval systems of linear equations. The idea of S. P. Shary of a combined method for correcting a linear tolerance problem has been implemented. A new method for managing the solution by changing the linear algebraic equations interval system matrix elements radii has been developed. The research results can be used for example, to calculate the substance’s concentrations by measurement of the characteristic X-ray radiation.
Keywords
About the Authors
A. N. BazhenovRussian Federation
Alexander N. Bazhenov
St. Petersburg
A. Yu. Telnova
Russian Federation
Anna Yu. Telnova
St. Petersburg
References
1. Bazhenov A. N., Zatylkin P. A., Measurement Techniques, 2019, vol. 62, no. 2, pp. 96–104. https://doi.org/10.1007/s11018-019-01592-3
2. Bazhenov A. N., Zatylkin P. A., Computational Technologies, 2020, vol. 25, no. 1, pp. 5–38. (In Russ.) https://doi.org/10.25743/ICT.2020.25.1.002
3. Shary S. P., Finite-dimensional interval analysis, Novosibirsk, XYZ Publ., 2021, available at: http://www.nsc.ru/interval/Library/InteBooks/SharyBook.pdf (accessed: 16.10.2021). (In Russ.)
4. Kearfott R. B., Nakao M. T., Neumaier A., Rump S. M., Shary S. P., van Hentenryck P., Standardized notation in interval analysis, Computational Technologies, 2010, vol. 15, no 1, pp. 7–13.
5. Bazhenov A. N., Interval analysis. Basics of theory and case studies: a tutorial, St. Petersburg, SPbPU Publ., 2020, 74 p., available at: https://elib.spbstu.ru/dl/2/s20-76.pdf/info (accessed: 09.11.2021). (In Russ.) https://doi.org/10.18720/SPBPU/2/s20-76
6. Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications, eds by Kosheleva O., Shary S. P., Gang Xiang, Zapatrin R., Springer Cham, 2020, 649 p. https://doi.org/10.1007/978-3-030-31041-7
7. X-Ray Data Booklet Table 1-3, available at: http://xdb.lbl.gov/Section1/Table_1-3.pdf (accessed: 16.10.2021).
8. Shary S. P., Automation and Remote Control, 2004, vol. 65, no. 10, pp. 1653–1666. https://doi.org/10.1023/B:AURC.0000044274.25098.da
9. Shary S. P., Sharaya I. A., Recognition of the solvability of interval equations and its applications to data analysis, Computational Technologies, 2013, vol. 18, no. 3, pp. 80–109. (In Russ.)
10. Shary S. P., Industrial laboratory. Diagnostics of materials, 2020, vol. 86, no. 1, pp. 62–74. (In Russ.) https://doi.org/10.26896/1028-6861-2020-86-1-62-74
11. Shor N. Z., Stetsyuk P. I., Cybernetics and Systems Analysis, 1997, vol. 33, no. 4, pp. 482–497. https://doi.org/10.1007/BF02733104
12. Stetsyuk P. I., Subgradient methods ralgb5 and ralgb4 for minimizing convex ravine functions, Computational Technologies, 2017, vol. 22, no. 2, pp. 127–149. (In Russ.)
13. Smolsky M. L., The solution of the interval linear problem of tolerances by the method of recognizing functional, final qualification work of a bachelor, SPbPU, 2020, available at: https://elib.spbstu.ru/dl/3/2020/vr/vr20-1397.pdf/info (accessed: 09.11.2021). (In Russ.) https://doi.org/10.18720/SPBPU/3/2020/vr/vr20-1397
14. Zhilin S. I., Reliable Computing, 2005, vol. 11, pp. 433–442. https://doi.org/10.1007/s11155-005-0050-3
15. Shary S. P., Mathematics and Computers in Simulation, 1995, vol. 39, iss. 1–2, pp. 53–85. https://doi.org/10.1016/0378-4754(95)00135-K
16. Shary S. P., Sharaya I. A., Computational Technologies, 2021, vol. 26, no. 3, pp. 61–85. (In Russ.) https://doi.org/10.25743/ICT.2021.26.3.005
Review
For citations:
Bazhenov A.N., Telnova A.Yu. Combined method for correction interval systems of linear algebraic equations. Metrologiya. 2021;(4):17-39. (In Russ.) https://doi.org/10.32446/0132-4713.2021-4-17-39