Preview

Metrologiya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Identification of the transient response of the capacitive relative humidity sensor

https://doi.org/10.32446/0132-4713.2019-4-51-68

Abstract

The results of solving the problem of identifying the transient response for the relative air humidity sensor based on experimental data are presented. It is shown that the capacitive relative humidity sensor is an integrated microprocessor system that performs joint processing of the readings of the absolute humidity sensor and the temperature sensor. A mathematical model of the relative humidity measurement process is proposed, the parameters of which are identified by experimental data. The transient response of the absolute humidity sensing element and the temperature sensor are specified under the assumption that they correspond to first-order aperiodic links. Based on the relationships of thermodynamics, Arden Buck equation, and given transient functions, analytical dependences are obtained to identify the parameters of the transient response of the relative humidity sensor using experimental data. A number of field experiments were carried out, the results of which were processed and analyzed in accordance with the proposed mathematical model. The effect of anomalous sensor readings was found, which consists in the fact that with simultaneous stepwise changes in humidity and temperature, there may be changes in the sensor readings in the direction opposite to the direction of the actual change in relative humidity. It is established that the cause of the anomalous results of measurements of relative humidity is the presence of a large multiple of the difference between the response time constant of the absolute humidity sensor and the response time constant of the temperature sensor. Measures are proposed to prevent anomalous results of relative humidity measurements resulting from mismatch of response time constants for absolute humidity sensor and temperature sensor.

About the Authors

I. Kaplya Victor
Volzhsky Polytechnic Institute, Branch of the Volgograd, State Technical University
Russian Federation


V. Kaplya Egor
National Research University "Moscow Power Engineering Institute"
Russian Federation


A. Silaev Aleksey
Volzhsky Polytechnic Institute, Branch of the Volgograd, State Technical University
Russian Federation


References

1. Feng Y., Cabezas A. L., Chen Q., Zheng L. R., Zhang Z. B., IEEE Sensors Journal., 2012, vol. 12., no. 9, pp. 2844-2850. DOI: 10.1109/JSEN.2012.2202390

2. Ravikant Singh S., Gupta G., Yadav S., Dubey P. K., Ojha V. N., Kumar A., Sensors and Actuators A: Physical, 2019, vol. 295, no. 15. pp. 133-140. DOI: 10.1016/j.sna.2019.05.023

3. Zhou W. H., Wang L. C., Wang L. B., IEEE Sensors Journal, 2016, vol. 16, no. 15, pp. 5979-5986. DOI: 10.1109/JSEN.2016.2579644

4. Li X., Chen X., Yu X., Chen X., Ding X., Zhao X. A., IEEE Sensors Journal, 2018, vol. 18, no. 3, pp. 962-966. DOI: 10.1109/JSEN.2017.2777871

5. Feng Y., Xie L., Chen Q., Zheng L. R., IEEE Sensors Journal, 2015, vol. 15, no. 6, pp. 3201-3208. DOI: 10.1109/JSEN.2014.2385154

6. Yu X., Chen X., Ding X., Zhao X., IEEE Transactions on Instrumentation and Measurement, 2018, vol. 67, no. 3, pp. 715-721. DOI: 10.1109/TIM.2017.2784082

7. Qiu X., Tang R., Zhu J., Oiler J., Yu C., Wang Z., Yu H., Sensors and Actuators B: Chemical, 2010, vol. 147, no. 2, pp. 381-384. DOI:10.1016/j.snb.2010.04.012

8. Lu D., Zheng Y., Penirschke A., Jakoby R., IEEE Sensors Journal, 2016, vol. 16, no. 1, pp. 13-14. DOI: 10.1109/JSEN.2015.2468082

9. Korenko B., Rothhardt M., Hartung A., Bartelt H., IEEE Sensors Journal, 2015, vol. 15, no. 10, pp. 5450-5454. DOI: 10.1109/JSEN.2015.2444100

10. Soltanian M. R. K., Sharbirin A. S., Ariannejad M. M., Amiri I. S., De La Rue R. M., Brambilla G., Rahman B. M. A., Grattan K. T. V., Ahmad H., IEEE Sensors Journal, 2016, vol. 16, no. 15, pp. 5987-5992. DOI: 10.1109/JSEN.2016.2573961

11. Steele J. J., Fitzpatrick G. A., Brett M. J., IEEE sensors journal, 2007, vol. 7, no. 6, pp. 955-956.

12. Wenhe Z., Xuan H., Jianyun W., Liangbi W., Liangcheng W., Journal Micro/Nanolith, Mems moems, 2017, vol. 16, no. 3, pp. 1-9. DOI: 10.1117/1.JMM.16.3.034503

13. Hong H. P., Jung K. H., Min N. K., Rhee Y. H., Park C. W., IEEE Sensors-Taipei, Taiwan, 2012. DOI: 10.1109/ICSENS.2012.6411151

14. Фрайден Дж. Современные датчики. Справочник. М.: Техносфера, 2005. 592 c.

15. Islam T., Pramanik C., Saha H., Microelectronics Reliability, 2005, vol. 45, no. 7, pp. 697-703.

16. Кирьянов А. П., Коршунов С. М. Термодинамика и молекулярная физика. М.: Просвещение. 1977. 159 c.

17. Buck A. L., Journal of Applied Meteorology, 1981, vol. 20, no. 12, pp. 1527-1532.

18. Dijksman J. F. Design of Piezo Inkjet Print Heads. From Acoustics to Applications, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. 2018. 430 p.

19. Капля Е. В. Идентификация и компенсация статических погрешностей фазовых координат элементов оптического энкодера // Измерительная техника. 2014. № 5. C. 13-18.

20. Алхимов Е. А., Довгаль А. Н., Иванова О. Б., Бурцев А. Г., Капля В. И., Носенко В. А. Идентификация электрических параметров печи сопротивления // Измерительная техника. 2011. № 7. C. 46-48.

21. Филлипс Ч., Харбор Р. Системы управления с обратной связью. М.: Лаборатория базовых знаний, 2001. 616 c.

22. Ellis G. Control System Design Guide (Fourth Edition), Waltham: Elsevier Inc. 2012. 498 p.

23. Дэннис Дж., Шнабель Р. Численные методы безусловной оптимизации и решения нелинейных уравнений. М.: Мир, 1988. 440 c.

24. Feng Y., Cabezas A. L., Chen Q., Zheng L. R., Zhang Z. B., IEEE Sensors Journal, 2012, vol. 12, no. 9, pp. 2844-2850. DOI: 10.1109/JSEN.2012.2202390

25. Ravikant Singh S., Gupta G., Yadav S., Dubey P. K., Ojha V. N., Kumar A., Sensors and Actuators A: Physical, 2019, vol. 295, no. 15. pp. 133-140. DOI: 10.1016/j.sna.2019.05.023

26. Zhou W. H., Wang L. C., Wang L. B., IEEE Sensors Journal, 2016, vol. 16. no. 15, pp. 5979-5986. DOI: 10.1109/JSEN.2016.2579644

27. Li X., Chen X., Yu X., Chen X., Ding X., Zhao X., IEEE Sensors Journal, 2018, vol. 18, no. 3, pp. 962-966. DOI: 10.1109/JSEN.2017.2777871

28. Feng Y., Xie L., Chen Q., Zheng L. R., IEEE Sensors Journal, 2015, vol. 15, no. 6, pp. 3201-3208. DOI: 10.1109/JSEN.2014.2385154

29. Yu X., Chen X., Ding X., Zhao X., IEEE Transactions on Instrumentation and Measurement, 2018, vol. 67, no. 3, pp. 715-721. DOI: 10.1109/TIM.2017.2784082

30. Qiu X., Tang R., Zhu J., Oiler J., Yu C., Wang Z., Yu H., Sensors and Actuators B: Chemical, 2010, vol. 147, no. 2, pp. 381-384. DOI:10.1016/j.snb.2010.04.012

31. Lu D., Zheng Y., Penirschke A., Jakoby R., IEEE Sensors Journal, 2016, vol. 16, no. 1, pp. 13-14. DOI: 10.1109/JSEN.2015.2468082

32. Korenko B., Rothhardt M., Hartung A., Bartelt H., IEEE Sensors Journal, 2015, vol. 15, no. 10, pp. 5450-5454. DOI: 10.1109/JSEN.2015.2444100

33. Soltanian M. R. K., Sharbirin A. S., Ariannejad M. M., Amiri I. S., De La Rue R. M., Brambilla G., Rahman B. M. A., Grattan K. T. V., Ahmad H., IEEE Sensors Journal, 2016, vol. 16, no. 15, pp. 5987-5992. DOI: 10.1109/JSEN.2016.2573961

34. Steele J. J., Fitzpatrick G. A., Brett M. J., IEEE Sensors Journal, 2007, vol. 7, no. 6, pp. 955-956.

35. Wenhe Z., Xuan H., Jianyun W., Liangbi W., Liangcheng W., Journal Micro/Nanolith, MEMS MOEMS, 2017, vol. 16, no. 3. pp. 1-9. DOI: 10.1117/1.JMM.16.3.034503

36. Hong H. P., Jung K. H., Min N. K., Rhee Y. H., Park C. W., IEEE Sensors-Taipei, Taiwan 2012. DOI: 10.1109/ICSENS.2012.6411151

37. Fraden J. Handbook of modern sensor. Physics designer and application. Third edition. Springer-Verlag, New York, Inc., 2004, 589 p.

38. Islam T., Pramanik C., Saha H., Microelectronics Reliability, 2005, vol. 45, no. 7, pp. 697-703.

39. Kir’yanov A. P., Korshchnov S. M. Termodinamika i molekulyarnaya fizika [Thermodynamics and molecular physics]. Moscow, Prosveshcheniye, 1977, 159 c.

40. Buck A. L., Journal of Applied Meteorology. 1981. vol. 20, no. 12, pp. 1527-1532.

41. Dijksman J. F., Design of Piezo Inkjet Print Heads. From Acoustics to Applications, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2018, 430 p.

42. Kaplya E. V., Measurement Techniques, 2014, vol. 57, no. 5, pp. 493-500.

43. Alkhimov E. A., Dovgal A. N., Ivanova O. B., Burtsev A. G., Kaplya V. I., Nosenko V. A., Measurement Techniques, 2011, vol. 54, no. 7, pp. 808-812.

44. Charles L. Phillips, Royce D. Harbor., Feedback control systems. Prentice-Hall, Inc., 2000.

45. Ellis G. Control System Design Guide (Fourth Edition), Waltham: Elsevier Inc., 2012.

46. Dennis J. E., Schnabel R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Inc., New Jersey, 1983, 378 p.


Review

For citations:


Victor I.K., Egor V.K., Aleksey A.S. Identification of the transient response of the capacitive relative humidity sensor. Metrologiya. 2019;(4):51-68. (In Russ.) https://doi.org/10.32446/0132-4713.2019-4-51-68

Views: 211


ISSN 0132-4713 (Print)
ISSN 2712-9071 (Online)