Обзор методов и средств измерений мощности лазерного излучения малых уровней
Abstract
About the Author
А. МикрюковRussian Federation
References
1. Иванов В. С. и др. Основы оптической радиометрии. М.: Физматлит, 2003. С. 544.
2. Schrama C. A. e. a. Comparison of monochromator-based and laser-based cryogenic radiometry // Metrologia. 1998. V. 35. P. 431– 435.
3. Geist J., Zalewski E. F., Schaefer A. R. Spectral response self-calibration andinterpolation of silicon photodiodes // Appl. Opt. 1980. V. 19, N 22. P. 3795 – 3799.
4. Key P. J., Fox N. P., Rastello M. L. Oxide-Bias Measurements In the Silicon Photodiode Self-Calibration Technique // Metrologia. 1985. V. 21. P. 81.
5. Fox N. P. Trap Detectors and their Properties // Metrologia. 1991. V. 28. P. 197 – 202.
6. Basore P. A., Clugson D. A. [Электрон. версия]. http://sourceforge.net/projects/pc1d (дата обращения 15.01.2013).
7. Synopsus [Офиц. сайт] http://synopsys.com (дата обращения 18.12.2012).
8. Mountford J. e. a. Development of a switched integrator amplifier for high-accuracy optical measurements // Appl. Opt. 2008. V. 47. P. 5821.
9. Porrovecchio G. e. a. A transfer standard for the low power / few photon regime – the trap detector plus switched integrator amplifier // Proc. 5th Single Photon Workshop. Germany: PTB, 2011. P. 110.
10. Migdall A. Correlated-Photon Metrology Without Absolute Standards //Phys. Today. 1999. P. 41– 46.
11. Rastello M. L. Metrology towards quantum-based photon standarts // Proc. 5th Single Photon Workshop. Germany: PTB, 2011. P. 109.
12. Geist J., Liang E., Schaefer A. R. J. Complete collection of minority carriers from the inversion layer in induced junction diodes // Appl. Phys. 1981. V. 52. P. 4879.
13. Zalewski E. F., Hoyt C. C. Comparison Between Cryogenic Radiometry and the Predicted Quantum Efficiency of pn Silicon Photodiode Light Traps // Metrologia. 1991. V. 28. P. 203 – 206.
14. Pat. 4.498.012 USA. 1985.
15. Saito T. Optical properties of semiconductor photodiodes/solar cells // Metrologia. 2012. V. 49. P. S118 – S123.
16. Gentile T. R., Houston J. M., Cromer C. L. Realization of a scale of absolute spectral response using the NIST high accuracy cryogenic radiometer // Appl. Opt. 1996. V. 35. P. 4392 – 4403.
17. Schaefer A. R., Zalewski E. F., Geist J. Silicon detector nonlinearity and related effects // Appl. Opt. 1983. V. 22. P. 1232 – 1236.
18. Eppeldauer G. P., Lynch D. C. Opto-Mechanical and Electronic Design of a Tunnel-Trap Si Radiometer // J. Res. Natl. Inst. Stand. Technol. 2000. V. 105. N 6. P. 813 – 828.
19. Goebel R., Yilmaz S., Pello R. Polarization dependence of trap detectors // Metrologia. 1996. V. 33. P. 207 – 213.
20. Carter A. C. e. a. Absolute cryogenic radiometer and solid-state trap detectors for IR power scales down to 1 pW with 0,1% uncertainty // Metrologia. 2009. V. 46. P. S146 – S150.
21. Migdall A. e. a. Single-Photon Tools, Techniques, and Prospects for Metrology// Proc. 5th Single Photon Workshop. Germany: PTB, 2011. P. 108.
22. Geist J., Baltes H. High accuracy modeling of photodiode quantum efficiency // Appl. Opt. 1989. V. 28. N 18. P. 3929 – 3939.
23. Gran J. e. a. Simulations of a predictable quantum efficient detector with PC1D // Metrologia. 2012. V. 49. P. 130 – 134.
24. Schmunk W. e. a. Relative detection efficiency calibration of single photon avalanche photo detectors using non-classical light // Proc. 5th Single Photon Workshop. Germany: PTB, 2011. P. 111.
25. Hofer H., Lopez M., Kück S. Fiber-based power measurement for the optical telecommunication in a wide spectral range // Proc. Intern. Conf. New Develop. and Appl. Opt. Radiometry. Korea, Daejeon: KRISS, 2008. P. 105 – 106.
Review
For citations:
. Metrologiya. 2013;(1):24-38. (In Russ.)